A Characterization for Sparse $\varepsilon$-Regular Pairs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A characterization for sparse ε-regular pairs

We are interested in (ε)-regular bipartite graphs which are the central objects in the regularity lemma of Szemerédi for sparse graphs. A bipartite graph G = (A]B,E) with density p = |E|/(|A||B|) is (ε)-regular if for all sets A′ ⊆ A and B′ ⊆ B of size |A′| ≥ ε|A| and |B ′| ≥ ε|B|, it holds that |eG(A, B′)/(|A′||B′|) − p| ≤ εp. In this paper we prove a characterization for (ε)-regularity. That ...

متن کامل

Regular pairs in sparse random graphs I

We consider bipartite subgraphs of sparse random graphs that are regular in the sense of Szemerédi and, among other things, show that they must satisfy a certain local pseudorandom property. This property and its consequences turn out to be useful when considering embedding problems in subgraphs of sparse random graphs.

متن کامل

TOPOLOGICAL CHARACTERIZATION FOR FUZZY REGULAR LANGUAGES

We present a topological characterization for fuzzy regular languages: we show that there is a bijective correspondence between fuzzy regular languages and the set of all clopen fuzzy subsets with finite image in the induced fuzzy topological space of Stone space (Profinite space), and then we give a representation of closed fuzzy subsets in the induced fuzzy topological space via fuzzy regular...

متن کامل

Regular Runge-Kutta pairs

Time-stepping methods that guarantee to avoid spurious fixed points are said to be regular. For fixed stepsize Runge-Kutta formulas, this concept has been well studied. Here, the theory of regularity is extended to the case of embedded Runge-Kutta pairs used in variable stepsize mode with local error control. First, the limiting case of a zero error tolerance is considered. A recursive regulari...

متن کامل

A Sparse Regular Approximation Lemma

We introduce a new variant of Szemerédi’s regularity lemma which we call the sparse regular approximation lemma (SRAL). The input to this lemma is a graph G of edge density p and parameters , δ, where we think of δ as a constant. The goal is to construct an -regular partition of G while having the freedom to add/remove up to δ|E(G)| edges. As we show here, this weaker variant of the regularity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2007

ISSN: 1077-8926

DOI: 10.37236/923